Monday, 12 June 2017

Gleitender Mittelwert Gaußfilter

Die Wissenschaftler und Ingenieure Leitfaden für digitale Signalverarbeitung Von Steven W. Smith, Ph. D. Kapitel 15: Verschieben von Durchschnittsfiltern Verwandte des Moving Average Filters In einer perfekten Welt müssten Filter-Designer nur mit Zeitdomänen - oder frequenzbereichskodierten Informationen umgehen, aber niemals eine Mischung aus beiden im selben Signal. Leider gibt es einige Anwendungen, bei denen beide Domains gleichzeitig wichtig sind. Zum Beispiel, Fernsehsignale fallen in diese fiese Kategorie. Die Videoinformation wird im Zeitbereich kodiert, dh die Form der Wellenform entspricht den Mustern der Helligkeit in dem Bild. Während der Übertragung wird das Videosignal jedoch entsprechend seiner Frequenzzusammensetzung, wie etwa seiner Gesamtbandbreite, behandelt, wie die Trägerwellen für die Tonampelfarbe addiert werden, die Eliminierungsampere-Wiederherstellung der Gleichspannungskomponente usw. Als weiteres Beispiel ist eine elektromagnetische Interferenz Wird am besten im Frequenzbereich verstanden, auch wenn die Signalinformation im Zeitbereich codiert wird. Zum Beispiel könnte die Temperaturüberwachung in einem wissenschaftlichen Experiment mit 60 Hertz von den Stromleitungen, 30 kHz von einem Schaltnetzteil oder 1320 kHz von einer lokalen AM-Funkstation verunreinigt sein. Verwandte des gleitenden Durchschnittsfilters weisen eine bessere Frequenzbereichsleistung auf und können in diesen gemischten Domänenanwendungen nützlich sein. Multiple-Pass-Gleit-Durchschnittsfilter beinhalten, daß das Eingangssignal zweimal oder mehrmals durch einen gleitenden Durchschnittsfilter geleitet wird. Abbildung 15.3a zeigt den Gesamtfilterkern, der aus einem, zwei und vier Durchgängen resultiert. Zwei Durchläufe entsprechen der Verwendung eines dreieckigen Filterkerns (eines rechteckigen Filterkerns, der mit sich selbst konstruiert wurde). Nach vier oder mehr Pässen sieht der äquivalente Filterkernel wie ein Gaußscher (Rückruf des zentralen Grenzwertsatzes) aus. Wie in (b) gezeigt, erzeugen mehrere Durchgänge eine s-förmige Sprungantwort im Vergleich zu der geraden Linie des einzigen Durchgangs. Die Frequenzantworten in (c) und (d) sind durch Gl. 15-2 multipliziert mit sich für jeden Durchlauf. Das heißt, jede Zeitbereichs-Faltung führt zu einer Multiplikation der Frequenzspektren. Abbildung 15-4 zeigt den Frequenzgang zweier anderer Verwandter des gleitenden Durchschnittsfilters. Wenn ein reiner Gaußscher als Filterkern verwendet wird, ist der Frequenzgang auch ein Gaußscher, wie in Kapitel 11 erläutert. Der Gaußsche ist wichtig, weil er die Impulsantwort vieler natürlicher und künstlicher Systeme ist. Beispielsweise wird ein kurzer Lichtimpuls, der in eine lange faseroptische Übertragungsleitung eintritt, als ein Gauss-Puls aufgrund der unterschiedlichen Pfade, die von den Photonen innerhalb der Faser aufgenommen werden, austreten. Der Gaußsche Filterkernel wird auch weitgehend in der Bildverarbeitung verwendet, da er einzigartige Eigenschaften hat, die schnelle zweidimensionale Windungen ermöglichen (siehe Kapitel 24). Der zweite Frequenzgang in Fig. 15-4 entspricht der Verwendung eines Blackman-Fensters als Filterkernel. (Der Begriff Fenster hat hier keine Bedeutung, er ist einfach Teil des akzeptierten Namens dieser Kurve). Die genaue Form des Blackman-Fensters ist in Kapitel 16 gegeben (Gleichung 16-2, Abb. 16-2), sie sieht jedoch sehr ähnlich wie ein Gaußscher. Wie sind diese Verwandten des gleitenden Durchschnittsfilters besser als der gleitende Mittelfilter selbst? Drei Wege: Erstens, und am wichtigsten, haben diese Filter eine bessere Stopbanddämpfung als das gleitende Mittelfilter. Zweitens verjüngen sich die Filterkerne zu einer kleineren Amplitude nahe den Enden. Es sei daran erinnert, dass jeder Punkt in dem Ausgangssignal eine gewichtete Summe einer Gruppe von Abtastungen von dem Eingang ist. Wenn sich der Filterkern verjüngt, werden die Abtastwerte im Eingangssignal, die weiter entfernt sind, weniger Gewicht als die in der Nähe befindlichen. Drittens sind die Schrittantworten glatte Kurven, und nicht die abrupte gerade Linie des gleitenden Durchschnitts. Diese letzten beiden sind in der Regel von begrenztem Nutzen, obwohl Sie Anwendungen finden könnten, wo sie echte Vorteile sind. Der gleitende Durchschnittsfilter und seine Verwandten sind alle ungefähr gleich, wenn man zufälliges Rauschen reduziert, während eine scharfe Sprungantwort beibehalten wird. Die Mehrdeutigkeit liegt darin, wie die Anstiegszeit der Sprungantwort gemessen wird. Wenn die Anstiegszeit von 0 bis 100 des Schritts gemessen wird, ist der gleitende Durchschnittsfilter das beste, was Sie tun können, wie zuvor gezeigt. Im Vergleich dazu misst die Messung der Risse von 10 bis 90 das Blackman-Fenster besser als das gleitende Mittelfilter. Der Punkt ist, das ist nur theoretische Squabbeln betrachten diese Filter gleich in diesem Parameter. Der größte Unterschied in diesen Filtern ist die Ausführungsgeschwindigkeit. Mit einem rekursiven Algorithmus (beschrieben als nächstes), wird der gleitende Durchschnitt Filter wie Blitz in Ihrem Computer laufen. In der Tat ist es die schnellste digitale Filter zur Verfügung. Mehrere Durchgänge des gleitenden Durchschnitts werden entsprechend langsamer, aber immer noch sehr schnell sein. Im Vergleich dazu sind die Gauß - und die Blackman-Filter quälend langsam, weil sie die Faltung verwenden müssen. Denken Sie einen Faktor von zehnmal die Anzahl der Punkte im Filterkernel (basierend auf der Multiplikation, die etwa zehnmal langsamer als die Addition ist). Zum Beispiel erwarten, dass ein 100-Punkt-Gaussian 1000-mal langsamer als ein gleitender Durchschnitt mit Rekursion. Smoothing entfernt kurzfristige Variationen oder quotnoisequot, um die wichtige zugrunde liegende unverfälschte Form der Daten zu enthüllen. Igoracutes Smooth Betrieb führt Box, quotbinomialquot, und Savitzky-Golay Glättung. Die verschiedenen Glättungsalgorithmen falten die Eingangsdaten mit unterschiedlichen Koeffizienten. Glättung ist eine Art Tiefpassfilter. Die Art der Glättung und die Menge der Glättung verändert den Filterfrequenz-Frequenzgang: Moving Average (auch bekannt als Box Smoothing) Die einfachste Form der Glättung ist der mittlere Mittelwert, der einfach jeden Datenwert durch den Durchschnitt der benachbarten Werte ersetzt. Um ein Verschieben der Daten zu vermeiden, empfiehlt es sich, die gleiche Anzahl von Werten vor und nach dem Durchschnittswert zu berechnen. In der Gleichung wird der gleitende Durchschnitt folgendermaßen berechnet: Ein anderer Begriff für diese Art der Glättung ist ein quoteschleifendes Durchschnittsquot, ein Quotschloß-Glättungsquot oder ein Quottend-Glättungsquot. Sie kann durch Falten der Eingangsdaten mit einem kastenförmigen Puls mit 2M1 Werten, die alle gleich 1 (2M1) sind, implementiert werden. Wir nennen diese Werte die quotcoefficientsquot der quotsmoothing kernelquot: Binomiale Glättung Die binomische Glättung ist ein Gaußscher Filter. Es faltet Ihre Daten mit normalisierten Koeffizienten aus Pascalacutes Dreieck auf einem Niveau gleich dem Glättungsparameter abgeleitet. Der Algorithmus stammt aus einem Artikel von Marchand und Marmet (1983). Savitzky-Golay Glättung Die Savitzky-Golay-Glättung nutzt einen anderen Satz von vorberechneten Koeffizienten, die auf dem Gebiet der Chemie populär sind. Es ist eine Art von Least Squares Polynom Glättung. Der Betrag der Glättung wird durch zwei Parameter gesteuert: die Polynomordnung und die Anzahl der Punkte, die verwendet werden, um jeden geglätteten Ausgangswert zu berechnen. Referenzen Marchand, P. und L. Marmet, Binomialer Glättungsfilter: Ein Weg, um einige Fallstricke der kleinsten quadratischen Polynomglättung zu vermeiden, Rev. Sci. Instrument . 54. 1034-41, 1983. Savitzky, A. und M. J.E. Golay, Glättung und Differenzierung von Daten durch vereinfachte Verfahren der kleinsten Fehlerquadrate, Analytische Chemie. 36. 1627-1639, 1964.Dokumentation Dieses Beispiel zeigt, wie gleitende mittlere Filter und Resampling verwendet werden, um die Auswirkungen von periodischen Komponenten der Tageszeit auf die stündlichen Temperaturmessungen zu isolieren und unerwünschte Leitungsgeräusche aus einer offenen Spannungsmessung zu entfernen. Das Beispiel zeigt auch, wie die Pegel eines Taktsignals zu glätten sind, während die Kanten durch Verwendung eines Medianfilters bewahrt werden. Das Beispiel zeigt auch, wie ein Hampel-Filter verwendet wird, um große Ausreißer zu entfernen. Motivation Glättung ist, wie wir wichtige Muster in unseren Daten zu entdecken, während Sie Dinge, die unwichtig sind (d. H. Rauschen). Wir verwenden Filter, um diese Glättung durchzuführen. Das Ziel der Glättung ist es, langsame Änderungen im Wert zu produzieren, so dass seine einfacher zu sehen, Trends in unseren Daten. Manchmal, wenn Sie Eingangsdaten untersuchen, können Sie die Daten glatt machen, um einen Trend im Signal zu sehen. In unserem Beispiel haben wir eine Reihe von Temperaturmessungen in Celsius genommen jede Stunde am Logan Flughafen für den gesamten Monat Januar 2011. Beachten Sie, dass wir visuell sehen können, die Wirkung, die die Tageszeit auf die Temperaturwerte hat. Wenn Sie sich nur für die tägliche Temperaturschwankung im Laufe des Monats interessieren, tragen die stündlichen Fluktuationen nur zu Lärm bei, was die täglichen Variationen schwer unterscheiden kann. Um den Effekt der Tageszeit zu entfernen, möchten wir nun unsere Daten mit einem gleitenden Mittelfilter glätten. Ein Moving Average Filter In seiner einfachsten Form nimmt ein gleitender Durchschnittsfilter der Länge N den Durchschnitt jeder N aufeinanderfolgenden Samples der Wellenform an. Um einen gleitenden Mittelwertfilter auf jeden Datenpunkt anzuwenden, konstruieren wir unsere Koeffizienten unseres Filters, so dass jeder Punkt gleich gewichtet ist und 124 zum Gesamtdurchschnitt beiträgt. Dies gibt uns die durchschnittliche Temperatur über jeden Zeitraum von 24 Stunden. Filterverzögerung Beachten Sie, dass der gefilterte Ausgang um etwa zwölf Stunden verzögert wird. Dies ist auf die Tatsache zurückzuführen, dass unser gleitender Durchschnittsfilter eine Verzögerung hat. Jedes symmetrische Filter der Länge N hat eine Verzögerung von (N-1) 2 Abtastungen. Wir können diese Verzögerung manuell berücksichtigen. Extrahieren von Durchschnittsdifferenzen Alternativ können wir auch das gleitende Mittelfilter verwenden, um eine bessere Schätzung zu erhalten, wie die Tageszeit die Gesamttemperatur beeinflusst. Dazu werden zuerst die geglätteten Daten von den stündlichen Temperaturmessungen subtrahiert. Dann segmentieren Sie die differenzierten Daten in Tage und nehmen Sie den Durchschnitt über alle 31 Tage im Monat. Extrahieren von Peak Envelope Manchmal möchten wir auch eine glatt variierende Schätzung haben, wie sich die Höhen und Tiefen unseres Temperatursignals täglich ändern. Um dies zu erreichen, können wir die Hüllkurvenfunktion verwenden, um extreme Höhen und Tiefen zu verbinden, die über eine Untermenge der 24-Stundenperiode erkannt werden. In diesem Beispiel stellen wir sicher, dass es mindestens 16 Stunden zwischen jedem extrem hohen und extrem niedrigen Niveau gibt. Wir können auch ein Gefühl dafür, wie die Höhen und Tiefen sind Trends, indem sie den Durchschnitt zwischen den beiden Extremen. Weighted Moving Average Filter Andere Arten von Moving Average Filtern gewichten nicht jede Probe gleichermaßen. Ein weiteres gemeinsames Filter folgt der Binomialexpansion von (12,12) n Dieser Filtertyp approximiert eine Normalkurve für große Werte von n. Es ist nützlich zum Herausfiltern von Hochfrequenzrauschen für kleine n. Um die Koeffizienten für das Binomialfilter zu finden, falten Sie 12 12 mit sich selbst und konvergieren dann iterativ den Ausgang mit 12 12 eine vorgeschriebene Anzahl von Malen. Verwenden Sie in diesem Beispiel fünf Gesamt-Iterationen. Ein anderer Filter, der dem Gaußschen Expansionsfilter ähnlich ist, ist der exponentiell gleitende Durchschnittsfilter. Diese Art des gewichteten gleitenden Durchschnittsfilters ist einfach zu konstruieren und erfordert keine große Fenstergröße. Sie passen einen exponentiell gewichteten gleitenden Durchschnittsfilter durch einen Alpha-Parameter zwischen null und eins an. Ein höherer Wert von alpha wird weniger Glättung haben. Untersuche die Messwerte für einen Tag. Wähle dein Land


No comments:

Post a Comment